Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP(app(minus, app(s, x)), app(s, y)) → APP(minus, x)
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, x), y))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(plus, app(s, x)), y) → APP(app(plus, app(app(minus, x), y)), app(double, y))
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(double, app(s, x)) → APP(s, app(double, x))
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(plus, app(s, x)), y) → APP(minus, x)
APP(app(plus, app(s, x)), y) → APP(app(plus, x), app(s, y))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(plus, app(s, x)), y) → APP(plus, x)
APP(double, app(s, x)) → APP(s, app(s, app(double, x)))
APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, x), y)
APP(double, app(s, x)) → APP(double, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)
APP(app(plus, app(s, x)), y) → APP(app(minus, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(plus, app(s, x)), y) → APP(double, y)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(plus, app(s, x)), y) → APP(s, y)
APP(app(plus, app(s, x)), y) → APP(plus, app(app(minus, x), y))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(minus, app(s, x)), app(s, y)) → APP(minus, x)
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, x), y))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(plus, app(s, x)), y) → APP(app(plus, app(app(minus, x), y)), app(double, y))
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(double, app(s, x)) → APP(s, app(double, x))
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(plus, app(s, x)), y) → APP(minus, x)
APP(app(plus, app(s, x)), y) → APP(app(plus, x), app(s, y))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(plus, app(s, x)), y) → APP(plus, x)
APP(double, app(s, x)) → APP(s, app(s, app(double, x)))
APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, x), y)
APP(double, app(s, x)) → APP(double, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)
APP(app(plus, app(s, x)), y) → APP(app(minus, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(plus, app(s, x)), y) → APP(double, y)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(plus, app(s, x)), y) → APP(s, y)
APP(app(plus, app(s, x)), y) → APP(plus, app(app(minus, x), y))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(minus, app(s, x)), app(s, y)) → APP(minus, x)
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, x), y))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(plus, app(s, x)), y) → APP(app(plus, app(app(minus, x), y)), app(double, y))
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
APP(double, app(s, x)) → APP(s, app(double, x))
APP(app(plus, app(s, x)), y) → APP(minus, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), app(s, y))
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, x), y)
APP(double, app(s, x)) → APP(s, app(s, app(double, x)))
APP(app(plus, app(s, x)), y) → APP(plus, x)
APP(double, app(s, x)) → APP(double, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)
APP(app(plus, app(s, x)), y) → APP(app(minus, x), y)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(plus, app(s, x)), y) → APP(double, y)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(plus, app(s, x)), y) → APP(s, y)
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(plus, app(s, x)), y) → APP(plus, app(app(minus, x), y))
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 4 SCCs with 20 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(double, app(s, x)) → APP(double, x)

The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13]. Here, we combined the reduction pair processor with the A-transformation [14] which results in the following intermediate Q-DP Problem.
Q DP problem:
The TRS P consists of the following rules:

DOUBLE(S(x)) → DOUBLE(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.


The following pairs can be oriented strictly and are deleted.


APP(double, app(s, x)) → APP(double, x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
DOUBLE(x1)  =  DOUBLE(x1)
S(x1)  =  S(x1)

Lexicographic path order with status [19].
Quasi-Precedence:
[DOUBLE1, S1]

Status:
DOUBLE1: [1]
S1: [1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, x), y)

The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13]. Here, we combined the reduction pair processor with the A-transformation [14] which results in the following intermediate Q-DP Problem.
Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.


The following pairs can be oriented strictly and are deleted.


APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, x), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  MINUS(x2)
s(x1)  =  s(x1)

Lexicographic path order with status [19].
Quasi-Precedence:
s1 > MINUS1

Status:
MINUS1: [1]
s1: [1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(plus, app(s, x)), y) → APP(app(plus, app(app(minus, x), y)), app(double, y))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), app(s, y))

The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13]. Here, we combined the reduction pair processor with the A-transformation [14] which results in the following intermediate Q-DP Problem.
Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(x, y)
PLUS(s(x), y) → PLUS(x, s(y))
PLUS(s(x), y) → PLUS(minus(x, y), double(y))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.


The following pairs can be oriented strictly and are deleted.


APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(plus, app(s, x)), y) → APP(app(plus, app(app(minus, x), y)), app(double, y))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), app(s, y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x1
s(x1)  =  s(x1)
minus(x1, x2)  =  minus(x1)
double(x1)  =  double(x1)
0  =  0

Lexicographic path order with status [19].
Quasi-Precedence:
[s1, double1] > minus1
0 > minus1

Status:
minus1: [1]
0: multiset
s1: [1]
double1: [1]


The following usable rules [14] were oriented:

app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(app(minus, x), 0) → x



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
The remaining pairs can at least be oriented weakly.

APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x2)
app(x1, x2)  =  app(x1, x2)
filter2  =  filter2
true  =  true
filter  =  filter
map  =  map
cons  =  cons
false  =  false
double  =  double
s  =  s
plus  =  plus
minus  =  minus
nil  =  nil
0  =  0

Lexicographic path order with status [19].
Quasi-Precedence:
true > [app2, false]
map > cons > APP1 > [filter, nil] > filter2 > [app2, false]
double > s > [app2, false]
double > 0
plus > s > [app2, false]
minus > [app2, false]

Status:
APP1: [1]
map: multiset
0: multiset
s: multiset
minus: multiset
nil: multiset
cons: multiset
filter: multiset
true: multiset
false: multiset
app2: [2,1]
plus: multiset
filter2: multiset
double: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)

The TRS R consists of the following rules:

app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(double, 0) → 0
app(double, app(s, x)) → app(s, app(s, app(double, x)))
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(app(plus, x), app(s, y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, app(app(minus, x), y)), app(double, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 2 less nodes.